
LEARNING RATE INVESTIGATION

IE 8521 COURSE PROJECT REPORT

Yu Yang∗
School of Statistics

University of Minnesota
yang6367@umn.edu

Liwei Huang
School of Mathematics
University of Minnesota
hual1842@umn.edu

December 9, 2019

ABSTRACT

Learning rate is one of the most important hyper-parameters in deep neural network training. An
appropriate learning rate scheme can help reduce the training time and boost the model performance.
In this report, we propose four decaying learning rate sequences and three updating strategies to
investigate the effect of learning rate schemes, in terms of convergence time and model performance.
We run experiments on MNIST, and CIFAR-10 datasets, both invovling convolutional neural net-
works. It is found that for the MNIST dataset, learning rate updating schemes don’t introduce much
improvement. While for the CIFAR-10 dataset, by applying certain designed learning rate updating
schemes, both the convergence time and the model performance get improved.

Keywords Learning rate · Convergence time ·Model performance

1 Introduction

Learning rate is a very important hyper-parameter in the configuration of a deep neural network. It controls the extent
to which we update the parameters at each training step. Choosing an appropriate learning rate can be challenging
since a value too small may lead to a long training process while a value too large would give fluctuation in loss and
sub-optimal results. Therefore, it is crucial to investigate the effect of learning rate updating schemes on convergence
time and final model performance.

In this report, we propose three updating strategies and four learning rate sequences, and use two datasets which are
widely used in deep learning as examples to investigate the effect of learning rate updating dynamics. The report goes as
follows: Section 2 describes the datasets, models, and loss function that are used in the experiments; Section 3 proposes
four decaying sequences and three updating strategies; Section 4 shows the results and analyses of the experiments;
Section 5 concludes the report.

2 Dataset and Model Description

2.1 Datasets and Task

We use two datasets that are commonly used in the basic deep learning models as examples: MNIST dataset[4] and
CIFAR-10 dataset[5]. The MNIST dataset is composed of gray-scale hand written 0-9 which are 28 × 28 in size,
containing 60,000 training and 10,000 testing examples. And the CIFAR-10 dataset consists of 10 classes of 32× 32
RGB images with 50,000 training and 10,000 testing examples in total. Example pictures are shown in Appendix 6.1.

For MNIST dataset, the goal is to correctly classify the digits; and for CIFAR-10 dataset, the goal is to correctly classify
the pictures with certain classes. They are both 10-class classification problems.

∗Check https://github.com/yuyangstatistics/lr_decaying for code and more results.

https://github.com/yuyangstatistics/lr_decaying

2.2 Convolutional Neural Network

CNN based models have been successfully exploited in image classification [1]. There are many variants of CNN that
works pretty well, such as VGG16[2], ResNet50[3]. But for simplicity and considering the time limit, we only use two
very simple CNN neural network frameworks with three convolution layers inside to be the classification models, one
for MNIST, and the other for CIFAR-10. The detail of the models is shown in Appendix 6.2.

2.3 Loss Function

Since both MNIST and CIFAR-10 are multi-class classification problems, cross-entropy loss would be a good choice as
the loss function. The definition is as follows:

l(x, class) = − log

(
exp (x[class])∑

j exp (x[j])

)
= −x[class] + log

∑
j

exp (x[j])

 (1)

3 Learning Rate Decaying Schemes

3.1 Decaying Sequences

By lecture notes, when the learning rate sequence is divergent, the algorithm converges faster, so we consider three
divergent decaying sequences. Also, exponentially decaying sequence is included due to its wide usage in deep learning
practice. The detail of the sequences are as follows and the comparison of the four sequences is shown in Figure 1.

Let r0 denote the initial learning rate, and rn denote the learning rate at step n.

1. seq1: rn = r0
n , is a divergent sequence.

2. seq2: rn = r0√
n

, is another divergent sequence, but converges to 0 slower than seq1.

3. seq3: rn = 0.9nr0, is an exponentially decaying sequence which is used quite often in deep learning, but is
convergent.

4. seq4: rn = qnr0, where qn = (1− ((n−1) mod 10)
10) 1

[n
10]+1 , is a decaying cyclic sequence, which allows the

learning rate a boost when the value gets too small.

Figure 1: Decaying Sequences

3.2 Updating Strategies

We propose three dynamic learning rate updating strategies as below.

1. By Epoch: for a given sequence, update learning rate after finishing every epoch. See Algorithm 1 for details.

2

2. By Cutoff: for a given sequence, update learning rate when the change in validation loss is smaller than
predefined cutoffs. Cutoff is defined to be c0 = loss0 ∗ 0.01, ct+1 = ct ∗ 0.2. See Algorithm 2 for details.

3. By Oscillate: for a given sequence, update learning rate when the validation loss is larger than the previous
one. See Algorithm 3 for details.

Algorithm 1 Update by epoch

1: Set initial learning rate: lr = r0
2: Run the model and update parameters with lr
3: Obtain a sequence of learning rate R = {r1, r2, · · · , rn}
4: for t← 1, 2, · · · , n : do
5: lr ← R.pop(0)
6: run the model and update parameters with lr

Algorithm 2 Update by cutoff

1: Set initial learning rate: lr = r0
2: Run the model and update parameters with lr
3: Obtain a sequence of learning rate R = {r1, r2, · · · , rn}
4: for t← 1, 2, · · · , n : do
5: if |valid losst − valid losst−1| < cutoff then
6: lr ← R.pop(0)
7: cutoff = cutoff × 0.2

8: run the model and update parameters with lr

Algorithm 3 Update by oscillate

1: Set initial learning rate: lr = r0
2: Run the model and update parameters with lr
3: Obtain a sequence of learning rate R = {r1, r2, · · · , rn}
4: for t← 1, 2, · · · , n : do
5: if valid losst − valid losst−1 > 0 then
6: lr ← R.pop(0)

7: run the model with learning rate lr.

4 Experiments

4.1 Experiment Configuration

In total, we consider 14 different settings: twelve given by the combination of the 4 sequences and 3 strategies using
SGD optimizer with initial learning rate r0 being 0.01; one given by SGD optimizer with fixed learning rate 0.001; one
given by Adam optimizer with fixed learning rate 0.001. For each setting, we run the experiments on both MNIST
dataset and CIFAR-10 dataset.

We split both datasets into training set and validation set, and use the convergence time and accuracy on the validation
set as the comparison metrics. For simplicity, we don’t consider the computational time of specific algorithms and use
the number of epochs at convergence as the metric of convergence time. And we use the final accuracy as the metric of
model performance.

In order to dig out the effect of learning rate, we do comparison in two stages. Firstly, for each strategy, we compare the
results of four sequences and choose the optimal setting in terms of convergence time and final accuracy respectively.
Secondly, we compare the optimal settings in each strategy with the benchmarks in terms of convergence time and final
accuracy.

3

4.2 Analysis on MNIST

Figure 2, 3, 4 show the results of comparison under the three strategies respectively. Figure 5 shows the optimal settings’
comparison result. And Table 1 gives a numerical illustration on the performance of these settings. We summarize our
findings and analyses as follows:

(1) Under "By Epoch", seq3 converges the fastest and seq4 achieves the highest final accuracy.
(2) Under "By Cutoff", seq4 converges the fastest and seq4 achieves the highest final accuracy.
(3) Under "By Oscillate", seq3 converges the fastest and achieves the highest final accuracy.
(4) In terms of convergence time, the setting "seq3 By Epoch" converges after 19 epochs, is the fastest.
(5) In terms of final accuracy, the setting "seq4 By Cutoff" achieves the highest accuracy, which beats both

benchmarks. Also, under all updating strategies, seq4 is always the best while seq1 is always the worst.
The reason we suppose is that seq1 has much smaller learning rate and decays very quickly in the first few
iterations, which slows down the progress of accuracy.

(6) The difference among these settings are very small, either in convergence time or in final accuracy. The reason
is possibly that this classification problem is so easy that even with fixed learning rate, high accuracy can be
achieved.

(7) Under "By Cutoff" and "By Oscillate", seq3(0.9nr0) and seq4(cyclic sequence) behave similarly. This
phenomenon matches with our intuition, since in these two scenarios, learning rate gets updated for less than
20 times, and according to Figure 1, seq3 and seq4 are close in the first 20 iterations.

(a) Comparison of sequences under "By Epoch" (b) A closer look at final accuracy under "By Epoch"

Figure 2: MNIST Comparison under "By Epoch"

(a) Comparison of sequences under "By Cutoff" (b) A closer look at final accuracy under "By Cutoff"

Figure 3: MNIST Comparison under "By Cutoff"

4

(a) Comparison of sequences under "By Oscillate" (b) A closer look at final accuracy under "By Oscillate"

Figure 4: MNIST Comparison under "By Oscillate"

(a) Convergence Time Comparison,first 50 epoch (b) A closer look at final accuracy

Figure 5: MNIST Convergence time comparison with benchmark

4.3 Analysis on CIFAR-10

Figure 6a, 6b, and 7a show the results of comparison under three strategies respectively. Figure 7b shows the optimal
settings’ comparison result. Table 2 gives a numerical illustration about the performance of these settings. We
summarize our findings and analyses as follows:

(1) Under "By Epoch", seq1 converges the fastest, and seq3 achieves the highest final accuracy.

(2) Under "By Cutoff", only seq1 converges and has an increasing trend, while the other sequences have relatively
large fluctuation and have decreasing trends. Seq1 achieves the highest final accuracy.

(3) Under "By Oscillate", seq1 converges the fastest, and we can clearly see the rank of convergence time: seq1 <
seq2 < seq4 < seq3. And the four sequences achieves similar final accuracy results.

(4) In terms of convergence time, the setting "seq1 By Epoch" and "seq1 By Oscillate" converge after 8 epochs,
are the fastest. Also, seq1 converges the fastest under all three updating strategies, and note that seq3 and seq4,
which are much larger than seq1 in the first few iterations according to Figure 1, undergo acute fluctuation in
the first few epochs, which jointly suggests that the initial learning rate 0.01 may be too large and shrinking it
may help avoid fluctuation and thus help with convergence.

(5) In terms of accuracy, the setting "seq3 By Epoch" achieves the highest accuracy, outperforms the two
benchmarks a lot. Also, all settings under "By Epoch" and "By Oscillate" outperform the benchmarks, which
suggests that it is worth the effort to do learning rate decaying. Another thing to note is that the results under
"By Cutoff" are less satisfying. The reason is that in this setting, the learning rate gets updated for less than 5

5

times, and hence the learning rate are kept at a relatively large level, which would then lead the parameters
away from the optimal, as illustrated by the downside trend in Figure 6b.

(6) Unlike MNIST, the results given by three updating strategies show different patterns, and the difference
between settings are much clearer in the CIFAR experiment.

(7) Similar to MNIST result, under "By Cutoff" and "By Oscillate", the behaviors of seq3 and seq4 are similar,
which can be interpreted using similar reasoning as in MNIST.

Table 1: MNIST Comparison
Method Accuracy Convergence

Benchmark SGD 0.98264 34
Adam 0.98574 30

By Epoch

seq1 0.97608 48
seq2 0.98230 38
seq3 0.98263 19
seq4 0.98527 40

By Cutoff

seq1 0.98290 32
seq2 0.98405 28
seq3 0.98614 29
seq4 0.98656 22

By Oscillate

seq1 0.98372 25
seq2 0.98544 27
seq3 0.98514 24
seq4 0.98586 30

Table 2: CIFAR Comparison
Method Accuracy Convergence

Benchmark SGD 0.7487 25
Adam 0.7309 17

By Epoch

seq1 0.763 8
seq2 0.7696 12
seq3 0.7803 11
seq4 0.7679 14

By Cutoff

seq1 0.7714 15
seq2 0.6438 25
seq3 0.6004 25
seq4 0.5848 25

By Oscillate

seq1 0.7677 8
seq2 0.773 11
seq3 0.7692 15
seq4 0.7673 12

(a) Comparison of sequences under "By Epoch" (b) Comparison of sequences under "By Cutoff"

Figure 6: CIFAR Comparison Plots

(a) Comparison of sequences under "By Oscillate" (b) Comparison of optimal settings

Figure 7: CIFAR Comparison plots

6

4.4 Overall Analyses and Guidelines

In the experiments mentioned above, we noticed that for the two datasets we considered, the behaviour of the proposed
settings differs a lot, with regard to both convergence time and final accuracy. Here are some of our analysis on the
cause of the difference and some guidelines based on the results in the previous sections.

(1) CIFAR-10 data is much more complicated than the MNIST data. CIFAR-10 data is composed of RGB pixels
while MNIST data is composed of sparse gray-scale pixels. In the MNIST case, it is much easier to achieve
high accuracy with fixed learning rate, and therefore, the effect of decaying learning rate is less obvious.

(2) MNIST and CIFAR-10 use different neural network models, and thus the dimension of parameters are different,
which in turn influence the characterisitcs of the objective functions.

(3) Note that although seq3 is a convergent sequence, its performance is still pretty good, with regard to both
convergence time and final accuracy. We suppose the reason might be that in practice, the number of epochs
being trained is usually not large, and thus it will not lose much power when compared with divergent
sequences.

(4) If we care more about convergence time, then choose the "seq3 By Epoch" updating scheme for MNIST
dataset, and choose the "seq1 By Oscillate" updating scheme for CIFAR-10 dataset, .

(5) If we care more about final accuracy, then choose the "seq4 By Cutoff" updating scheme for MNIST dataset,
and choose the "seq3 By Epoch" updating scheme for CIFAR-10 dataset.

(6) For practitioners, the complexity of the datasets and models should be taken into consideration when deciding
which learning rate updating scheme to use. Based on the comparison between MNIST and CIFAR-10, we
may infer that the more complex the datasets, the more boosting in performance with a proper choice of
learning rate updating scheme.

5 Conclusion

In this report, we performed experiments on MNIST and CIFAR-10 datasets under 14 different settings, using the
proposed strategies and decaying sequences. Also, we described our findings and analyses on the experimental results
and provided some guidelines for practitioners. Our experiments showed for different datasets, the optimal learning rate
updating scheme would be different and that by choosing proper learning rate updating scheme, the performance of the
model and the convergence of the training process would be improved. For the future work, we will study the effect of
learning rate in a more generic framework and on more datasets.

References

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[2] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[3] K He, X Zhang, S Ren, and J Sun. Deep residual learning for image recognition. computer vision and pattern
recognition (cvpr). In 2016 IEEE Conference on, volume 5, page 6, 2015.

[4] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[5] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Technical report,
Citeseer, 2009.

7

6 Appendix

6.1 Dataset Example Images

MNIST

Figure 8: MNIST Example Images

CIFAR-10

Figure 9: CIFAR-10 Example Images

6.2 Network Architectures

MNIST model architecture Let dk denotes a 3× 3 Convolution-Maxpooling-ReLU layer with k filters, stride 1, and
the kernel size of maxpooling being 2. fk-l denotes a k × l fully connected layer. The network consists of: d20,
f3380-128, ReLU, f128-10, Softmax.

CIFAR-10 model architecture Let dk denotes a 3 × 3 Convolution-Elu-Maxpooling layer with k filters, stride 1,
padding 1, and the kernel size of maxpooling being 2. fk-l denotes a k× l fully connected layer. The network consists
of: d16, d32, d64, Dropout, f1024-500, Elu, Dropout, f500-10.

8

	Introduction
	Dataset and Model Description
	Datasets and Task
	Convolutional Neural Network
	Loss Function

	Learning Rate Decaying Schemes
	Decaying Sequences
	Updating Strategies

	Experiments
	Experiment Configuration
	Analysis on MNIST
	Analysis on CIFAR-10
	Overall Analyses and Guidelines

	Conclusion
	Appendix
	Dataset Example Images
	Network Architectures

