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Introduction

@ Learning rate is a crucial hyper-parameter in deep neural network
training, choosing a proper learning rate can
e reduce training time.
e boost the model performance.
@ In our project, we:
e propose four decaying sequences and three dynamic updating
strategies.
e investigate the effect of learning rate decaying schemes on convergence
time and model performance under two datasets.
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© Datasets and Model
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Figure 2: CIFAR-10 Example Images
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Model and Loss

Convolutional Neural Networks are used for the multi-class classification.
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Figure 3: CNN model

Cross-Entropy Loss

=—1lo w = —z|class o} exp (z|j
[(z,class) = lg<zjexp(:c[j])> [class] + log Z p (z[4])

6/20



© Leamning Rate Decaying Schemes

7/20



Decaying Sequences
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Updating Strategies

We propose three dynamic learning rate updating strategies:
@ By Epoch: update after every epoch
o By Cutoff: update when the change in loss is smaller than a cutoff

@ By Oscillate: update when the loss increases

Algorithm 1 Update by epoch

Ir < R.pop(0)
run the model and update parameters with Ir

1: Set initial learning rate: Ir = r

2: Run the model and update parameters with Ir

3: Obtain a sequence of learning rate R = {ry, 72, -+ ,rp}
4 fort <« 1,2,--- ;n:do

5:

6:
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Updating Strategies (Cont.)

Algorithm 2 Update by cutoff

1. fort < 1,2,--- ,n:do

2 if |valid loss; — valid loss;—1| < cutof f then
3: Ir < R.pop(0)

4 cutof f = cutof f x 0.2

5 run the model and update parameters with Ir

Algorithm 3 Update by oscillate

1: fort < 1,2,--- ,n:do

2: if valid loss; — valid loss;_1 > 0 then
3: Ir < R.pop(0)

4 run the model with learning rate Ir.
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@ Experiments
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Experiment Configuration

@ Settings
e 12 combinations of the 4 sequences and 3 strategies using SGD
optimizer with rg = 0.01
e SGD benchmark with fixed learning rate 0.001
e Adam benchmark with fixed learning rate 0.001
o Metrics
e Split the datasets into training set and validation set, train the model
on the training set, evaluate on the validation set.

o Use the number of epochs at convergence point as the metric of
convergence time.

e Use the final accuracy as the metric of model performance.
o Comparisons
o For each strategy, compare four sequences, and pick out the optimal
combination.
o Compare the optimal settings with the two benchmarks.
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MNIST: Results & Analyses

Table 1: MNIST Comparison

Method Accuracy | Convergence
Benchmark S0P | 0.98264 34
Adam | 0.98574 30
seql 0.97608 48
seq2 | 0.98230 38
By Epoch — eq3 | 0.98263 19
seq4 | 0.98527 40
seql 0.98290 32
seq2 | 0.98405 28
By Cutoff 003 | 0.98614 29
seqg4 | 0.98656 22
seql 0.98372 25
. seq2 | 0.98544 27
By Oscillate (.23 | 0.98514 24
seq4 0.98586 30
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MNIST: Results & Analyses (Cont.)
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(a) Comparison of best sequences chosen (b) A closer look at final accuracy under
from different criteria " By cutoff”

Figure 5: MNIST illustration
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CIFAR-10: Results & Analyses

Table 2: CIFAR Comparison

Method Accuracy | Convergence
Benchmark SGD 0.7487 25
Adam | 0.7309 17
seql 0.763 8
seq2 0.7696 12
By Epoch .03 | 07803 11
seq4 0.7679 14
seql 0.7714 15
seq2 0.6438 25
By Cutoff .73 | 0.6004 25
seq4 0.5848 25
seql 0.7677 8
. seq2 0.773 11
By Oscillate o003 | 07692 15
seq4 0.7673 12
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CIFAR-10: Results & Analyses (Co
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Figure 6: CIFAR illustration
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Key Results Recap!

@ MNIST: "seq3 By Epoch” converges the fastest, "seq4 By Cutoff”
achieves the highest accuracy.
o CIFAR-10: "seql By Oscillate” converges the fastest, "seq3 By
Epoch” achieves the highest accuracy.
@ It is worth the effort to design a learning rate decaying scheme.
@ The results for MNIST and CIFAR-10 differ a lot.
e A proper decaying scheme can make a great improvement in CIFAR-10,
but little change in MNIST.
e MNIST and CIFAR-10 have different data and model complexity.
@ Although seq3 is a convergent sequence, its performance is pretty
good.

LCheck https://github.com/yuyangstatistics/1lr_decaying for code and more graphical results.
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Conclusion

@ Conclusion
e Proposed four decaying sequences and three updating strategies.
o Performed experiments and analysis on MNIST and CIFAR-10 datasets
under 14 different settings.
o Described our findings and analyses on the experimental results and
provided some guidelines for practitioners.
o Future work

e Study the effect of learning rate in a more generic framework and on
more datasets.
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