Learning Rate Investigation

Yu Yang & Liwei Huang

University of Minnesota

December 9, 2019

1 Introduction

- 2 Datasets and Model
- 3 Learning Rate Decaying Schemes

4 Experiments

- Learning rate is a crucial hyper-parameter in deep neural network training, choosing a proper learning rate can
 - reduce training time.
 - boost the model performance.
- In our project, we:
 - propose four decaying sequences and three dynamic updating strategies.
 - investigate the effect of learning rate decaying schemes on convergence time and model performance under two datasets.

2 Datasets and Model

3 Learning Rate Decaying Schemes

4 Experiments

Datasets

MNIST

Figure 1: MNIST Example Images

CIFAR-10

Figure 2: CIFAR-10 Example Images

Model and Loss

Convolutional Neural Networks are used for the multi-class classification.

Figure 3: CNN model

Cross-Entropy Loss

$$l(x, class) = -\log\left(\frac{\exp\left(x[class]\right)}{\sum_{j} \exp\left(x[j]\right)}\right) = -x[class] + \log\left(\sum_{j} \exp\left(x[j]\right)\right)$$

2 Datasets and Model

3 Learning Rate Decaying Schemes

4 Experiments

Decaying Sequences

Figure 4: seq1: $r_n = \frac{r_0}{n}$; seq2: $r_n = \frac{r_0}{\sqrt{n}}$; seq3: $r_n = 0.9^n r_0$; seq4: $r_n = q_n r_0$, where $q_n = (1 - \frac{((n-1) \mod 10)}{10}) \frac{1}{\lfloor \frac{n}{10} \rfloor + 1}$

We propose three dynamic learning rate updating strategies:

- By Epoch: update after every epoch
- By Cutoff: update when the change in loss is smaller than a cutoff
- By Oscillate: update when the loss increases

Algorithm 1 Update by epoch

- 1: Set initial learning rate: $lr = r_0$
- 2: Run the model and update parameters with lr
- 3: Obtain a sequence of learning rate $R = \{r_1, r_2, \cdots, r_n\}$
- 4: for $t \leftarrow 1, 2, \cdots, n$: do

5:
$$lr \leftarrow R.pop(0)$$

6: run the model and update parameters with lr

Algorithm 2 Update by cutoff

1: for
$$t \leftarrow 1, 2, \cdots, n$$
: do
2: if $|valid \ loss_t - valid \ loss_{t-1}| < cutoff$ then
3: $lr \leftarrow R.pop(0)$

4:
$$cutoff = cutoff \times 0.2$$

5: run the model and update parameters with lr

Algorithm 3 Update by oscillate

1: for
$$t \leftarrow 1, 2, \cdots, n$$
 : do

2: **if**
$$valid \ loss_t - valid \ loss_{t-1} > 0$$
 then

3:
$$lr \leftarrow R.pop(0)$$

4: run the model with learning rate lr.

- 2 Datasets and Model
- **3** Learning Rate Decaying Schemes

- Settings
 - 12 combinations of the 4 sequences and 3 strategies using SGD optimizer with $r_0=0.01\,$
 - SGD benchmark with fixed learning rate 0.001
 - Adam benchmark with fixed learning rate 0.001
- Metrics
 - Split the datasets into training set and validation set, train the model on the training set, evaluate on the validation set.
 - Use the number of epochs at convergence point as the metric of convergence time.
 - Use the final accuracy as the metric of model performance.
- Comparisons
 - For each strategy, compare four sequences, and pick out the optimal combination.
 - Compare the optimal settings with the two benchmarks.

MNIST: Results & Analyses

Table 1: MNIST Comparison				
Method		Accuracy	Convergence	
Benchmark	SGD	0.98264	34	
	Adam	0.98574	30	
By Epoch	seq1	0.97608	48	
	seq2	0.98230	38	
	seq3	0.98263	19	
	seq4	0.98527	40	
By Cutoff	seq1	0.98290	32	
	seq2	0.98405	28	
	seq3	0.98614	29	
	seq4	0.98656	22	
By Oscillate	seq1	0.98372	25	
	seq2	0.98544	27	
	seq3	0.98514	24	
	seq4	0.98586	30	

MNIST: Results & Analyses (Cont.)

(a) Comparison of best sequences chosen from different criteria

(b) A closer look at final accuracy under "By cutoff"

Figure 5: MNIST illustration

CIFAR-10: Results & Analyses

Table 2: CIFAR Comparison				
Method		Accuracy	Convergence	
Benchmark	SGD	0.7487	25	
	Adam	0.7309	17	
By Epoch	seq1	0.763	8	
	seq2	0.7696	12	
	seq3	0.7803	11	
	seq4	0.7679	14	
By Cutoff	seq1	0.7714	15	
	seq2	0.6438	25	
	seq3	0.6004	25	
	seq4	0.5848	25	
By Oscillate	seq1	0.7677	8	
	seq2	0.773	11	
	seq3	0.7692	15	
	seq4	0.7673	12	

CIFAR-10: Results & Analyses (Cont.)

(a) A closer look at pattern of different sequences under "By epoch"

(b) A closer look at pattern of different sequences under "By cutoff"

Figure 6: CIFAR illustration

- MNIST: "seq3 By Epoch" converges the fastest, "seq4 By Cutoff" achieves the highest accuracy.
- CIFAR-10: "seq1 By Oscillate" converges the fastest, "seq3 By Epoch" achieves the highest accuracy.
- It is worth the effort to design a learning rate decaying scheme.
- The results for MNIST and CIFAR-10 differ a lot.
 - A proper decaying scheme can make a great improvement in CIFAR-10, but little change in MNIST.
 - MNIST and CIFAR-10 have different data and model complexity.
- Although seq3 is a convergent sequence, its performance is pretty good.

¹Check https://github.com/yuyangstatistics/lr_decaying for code and more graphical results.

- 2 Datasets and Model
- 3 Learning Rate Decaying Schemes

Conclusion

- Proposed four decaying sequences and three updating strategies.
- Performed experiments and analysis on MNIST and CIFAR-10 datasets under 14 different settings.
- Described our findings and analyses on the experimental results and provided some guidelines for practitioners.
- Future work
 - Study the effect of learning rate in a more generic framework and on more datasets.

- Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied to documentrecognition.Proceedings of the IEEE, 86(11):2278–2324, 1998.
- Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Technical report, Citeseer, 2009.
- Project code github page: https://github.com/yuyangstatistics/lr_decaying