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The Challenge

e Obijective: Investigate the factors/characteristics that influence the soybean futures
closing prices for 3 different contract months

e Primary Goal: Predict soybean closing prices for 5 days: November 4 - 8, and for 3
contract months: March, May, and July 2020
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Feature Exploration: Commaodities
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Feature Exploration: External Features

Feature Importance in XGBoost Model
(March 2020 Contract)
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Modeling Strategy
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Model Interpretation

March 2020: Nov. 4-8 Prediction
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Conclusion

e Making price predictions is hard.
e Predicting further out days is harder.

e Good indicators of soybean prices:

Corn, which has similar uses as soybeans, and whose market size is x3-4 that of soybeans
Soybean contracts for different months

Soybean oil and soybean meal, which are connected in production processes
Macroeconomic indicators, such as Dow Jones Industrial and interest rates
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Weather in high production areas
e Because our primary goal is 5-day forecast, the predictive power of the related
commodities outweighs that of random events, such as tweets and tariffs.



Thank you. Questions?



Data Compromises

e Some commodities futures are only available for a few months (rice, canola)

o Develop short term and long term models to account for different time scales

e Weekend data from tweets, weather, etc. should affect Monday’s closing price

o  Average values from Saturday, Sunday, and Monday to make features from all three days
account for Monday

e Dates for previous contracts (e.g. March 2019) do not overlap with dates for
current contracts (e.g. March 2020)

o  Shift dates for previous contracts to roughly overlap with current dates



Feature Engineering of Tweets

e (Cluster Trump tweets by topic using LDA model.
Perform sentiment analysis on trade and economy relevant tweets data.

Use likes and retweets number as weight to average sentiment score.

Top-30 Most Relevant Terms for Topic 3 (4.8% of tokens)
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Weather Data

Weather taken from stations located near high soybean production areas.

Source: National Oceanic and Atmospheric Association (NOAA)
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Feature Exploration: Comparison Across Contract Months

e Soybean contracts for different Soybean Prices

months are highly correlated (March, May, July 2020 Contracts)
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Data Exploration: Fires in Brazil
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Data Exploration: Historical Soybean Gontracts
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Data Exploration: Canola and Soybean Prices

e After scaling, we find that
canola and soybean markets
display similar patterns
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Main Commodities Prices

Main Commodities Prices
(March 2020 Contract)
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Yearly Average Prices

Average Soybean Price per Year
(March Contracts)
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Data Exploration: Feature Importance

Feature Importance in LSTM Model
(March 2020 Contract)
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Model Details

e Walk forward cross-validation for model selection
e Grid search for model averaging
e External Model (long term features):

o  Use our external features and long term commodities in models that train farther back in the past
o  Create one model for each day: Monday’s model is based on lag 1 exogenous values, Tuesday’s
model is based on lag 2, etc., and Friday’s model is based on lag 5
e Short term model:
o Use Vector Autoregression to capture the evolution and the interdependencies between multiple
economic data
o  Make one prediction of five days so that our predictions capture autocorrelation patterns



Model Interpretation

XGBoost for Nov. 5
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Model Selection & Weighted Averaging

Approach:

e Use walk-forward cross validation to
select models

e Use grid search to find the best
combination of models using the week
Oct 28 - Nov 1 as validation

Individual and Averaged Model Predicitons

(March 2020 Contract)
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Model Results

March May
2020 2020

Pred. Actual | Diff. Pred. Actual | Diff.
Nov.4 | 95050 | 95125 | 0.75 Nov.4 | 96175 | 96325 | 150
Nov.5 | 95100 | 94725 | -3.75 Nov.5 | 96225 | 959.00 | -3.25
Nov.6 | 95100 | 940.75 | -10.25 Nov.6 | 963.00 | 95275 | -10.25
Nov.7 | 95125 | 94875 | -250 Nov.7 | 96350 | 96025 | -3.25
Nov.8 | 95175 | 948.00 | -3.75 Nov.8 | 964.25 | 959.50 | -4.75

Average error: -3.91

July
2020

Pred. Actual | Diff.
Nov.4 | 97150 | 97350 | 2.00
Nov.5 | 97200 | 96925 | -2.75
Nov.6 | 97250 | 96325 | -9.25
Nov.7 | 97275 | 970.75 | -2.00
Nov.8 | 973.00 | 969.75 | -3.25




Data Sources

Data supplied by Farm Femmes

MRCT’s Free Historical Futures Prices: https://www.mrci.com/ohlc/index.php

Trump Twitter Archive: http://www.trumptwitterarchive.com/archive
The US-China Trade War: A Timeline:

https://www.china-briefing.com/news/the-us-china-trade-war-a-timeline

e NOAA Weather:

https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets
e US. Agricultural Trade Data:

https://www.ers.usda.gov/data-products/foreign-agricultural-trade-of-the-united-stat

es-fatus/us-agricultural-trade-data-update
e NASA Fire Data: https://firms.modaps.eosdis.nasa.gov/download/
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(temp slide for relevant Tim facts)

e Corn is more influential on soybean prices than soybeans, bc corn market 3-4x
bigger than soybeans and animal feed is usually corn & soybean mix

e US and China are 2 biggest bulk commodity producers in the world (20%
together)



