
1

R Reference Guide

This R guide was put together to provide a quick reference guide to those who plan to use

R in STAT 3011/3021. We focus here just on the types of things you will need to do in this

course. There is much more you can do with R, however, and we hope that you’ll feel

comfortable exploring and trying new things once you get the basic ideas down (and that

this exposure to R will provide you with a good foundation to study R in more detail in

other courses).

As you are going through this guide, we strongly encourage you to walk through the steps

we have outlined and practice using R (and ask questions!). We hope this will be a useful

reference for you to refer back to many times this semester, and we also hope your feedback

will help us to make this an even better reference for future students.

Also, please keep in mind that this guide is mostly meant to show you how to obtain certain

kinds of output. You’ll learn throughout the semester, by working through other activities

and utilizing other resources, how to interpret this output.

Downloading R

Step 1: Go to http://www.r-project.org

Step 2: On the left hand side, click the link under the Download, Packages

section that says CRAN

Step 3: Pick 0-Cloud https://cloud.r-project.org/

Step 4: Click on the system you have (Linux, Mac OS X, or Windows)

Step 5: For Mac, click on the Latest release (R-3.5.1.pkg as of

December 2018)

For Windows, click base and then Download R for Window (R 3.5.1 as of

December 2018).

Step 6: Follow the directions for installing R onto your computer, and then you

will be ready to go.

Downloading R Studio

Step 1: Go to https://www.rstudio.com/products/rstudio/download/

Step 2: On the left hand side, click DOWNLOAD button under RStudio Desktop

Open Source License FREE.

Step 3: Pick a correct installer for your operating system (Windows, Mac, etc.)

Step 4: Follow the directions for installing RStudio onto your computer, and

then you will be ready to go.

http://www.r-project.org/
https://cloud.r-project.org/
https://www.rstudio.com/products/rstudio/download/

2

Getting Started

When you first open R Studio, like below you will see a screen with three windows;

Console (left window), Environment (top right window), Files/Plot (bottom right

window).

Console is where any work is processed and shows outputs. If there is any errors in your

R commands, the error message will appear in the console.

Environment shows datasets and objects created. You can click on ‘History’ tab to view

previous R commands.

Files show any files in your working directory by default. ‘Plots’ tab shows any previous

plots.

If you do not see three windows, you can go do [View] - [Panes] – [View all Panes] (see below)

3

R as a calculator
Retype each line of the following R commands in your console and hit [Enter] and observe

what R produces.

9+7

sqrt(16)

abs(-3)

3^2

3**2

3%2

3e1

3e-1

Questions:

What do you think ‘sqrt(16)’ calculates?

What about ‘abs(-3)’?

Did you see any error message when you typed 3%2? Fix the command so it calculates

3 divided by 2.

What do you think ‘3e1’ mean? What about ‘3e-1’?

Note: Never enter > in console. This symbol indicates the program is ready for a new line

of code and is called a command prompt.

4

Creating simple objects

You can use either ‘<-’ or ‘=’ to create objects.

Type each of the following line in your Console and heat [Enter]. Before you type the next

command, check ‘Environment’ window if the object appears.

x<-1
y=3
xy<-x*y

Two commands above create two objects ‘x’ and ‘y’ and ‘x’ is defined as 1 and ‘y’ is defined as

3. ‘xy’ is defined as x multiplied by y. You can check ‘Environment’ Window (top right) to see

all three objects (see below).

Printing objects & adding comments

Try each line of commands below:

print(x)
x
y
y<-“a”
#now y is “a”. Check your Environment window.
y
typeof(y)
#Next X is capital
X

Note that both ‘print(x)’ and ‘x’ in line 1 and 2 return the stored value of x which is 1.

Similarly ‘y’ returns the stored value of y which is 3.

When you run ‘ y=“a” ’, R console does not print the value of y.

You can still see that the environment window has the updated the value of y.

‘#’ sign is used to comment. R ignores everything that appears after ‘#’. You can use the hash

symbol at the beginning of a line or somewhere in the middle.

‘typeof’ is a built-in R function that returns the type of an argument.

5

R is case-sensitive; x and X are different objects. As you have not defined X yet, ‘X’ will produce

the following error message Error:

 Error: object 'X' not found

Removing objects

To remove object(s), use ‘rm’ or ‘remove’ command:

rm(x) #removes x only

rm(x, y) #removes x and y

Verify that x and y are moved in your Environment window. You may click in Environment

window to remove all stored objects and any dataset (see highlighted area below).

Using R script

So far you’ve typed R commands in Console. Generally it is recommended to type R

commands in R Script. R Script allows you to save your work and open the script file later and

continue working on your project. You can reproduce outputs without typing commands again.

To open R Script, click on the top left corner and click [R Script] (see below).

6

You can write commands as you did in console. It is always good to explain what you are going

to do as a comment. Instead of hitting [Enter], you can click ‘Run’ button (Red circle below).

Make sure your cursor is at the command you want to run. You will see output in Console or

Environment window. To run multiple commands, you can highlight all commands you want to

run and click ‘Run’. You can also run commands in Script by hitting [Ctrl]+[Enter] in Window

PC or [Command]+[Enter] in Mac.

 To save your script, click Save button (Blue rectangle above) or hit [Ctrl]+S. The next time you

use R, you can simply open that script file (after you have opened R) and then add to it or run

certain commands again.

7

Creating a vector

When you want to store more than one number/character to an object, you can create a vector.

You can think of a vector as a row or column of numbers or text. The list of numbers

{1,2,3,4,5}, for example, could be a vector. Unlike most other programming languages, R

allows you to apply functions to the whole vector in a single operation (without a loop).

First assign the values of 1,2,3,4,5 to a vector called x:

x<-c(1,2,3,4,5)

Whenever you want to create a vector, you need ‘c()’. The letter ‘c’ stands for ‘combine’.

Type x in Console and hit [Enter]. You will see it returns 1,2,3,4,5.

Next, add the value 2 to each element in the vector x:

x+2

Create another vector y containing 6,7,8, 9, 10 and add vector x and y:

y<-6:10

x+y

Note that in 6:10 Colon operator is used instead of c(6,7,8,9, 10). 6:10 generates a

sequence from 6 to 10.

Creating different types of objects (entering data set manually)

Suppose you

have four students’ names and their Exam 1 and Exam 2 scores.

names=c("Adam", "Ben", "Chuck", "Dan")
exam1=c(78, 51, 60, 90)
exam2<-c(80, 78, 59, 87)

Whenever you want to create a vector, you need ‘c()’. The letter ‘c’ stands for ‘combine’.

Check your Environment window to see if three objects are created properly (see below).

8

‘num[1:4]’ indicates that each vector exam1 and exam2 contains 4 numbers. Similarly

‘chr[1:4]’ shows that vector names contains 4 characters.

We can use a R built-in command ‘data.frame()’ to make a dataset containing the three

vectors.

mydata<-data.frame(names, exam1, exam2)

Check the Environment window and you will see a new data set ‘mydata’.

4 obs. of 3 variables means that there are 4 observations (4 students) and 3 vectors

(names, exam1, exam2) in ‘mydata’

By clicking the name of the data set (see red circles below) or running R command

‘View(mydata)’, you can see the entire data.

9

You can ALWAYS directly type the data into R, but working with an external file (like an

Excel file) is very common (and you may see why when you find out how tedious it can

be to enter a large data set with multiple variables directly into R). We thus encourage R

users to get used to importing a data set into R.

Data in Excel, imported into R

Suppose we asked all students in a class (where there are N = 15 students): “How many

states and countries have you visited in your lifetime?” The following data was obtained

from the class:

 Number of states visited: 15 10 28 27 27 17 29 23 21 36 16 35 32 27 34

 Number of countries visited: 6 4 14 4 6 10 3 13 8 13 9 6 6 11 21

Now there are two variables that we collected from the students: number of states and

number of countries per student. Open Excel and type the variable names into the first

row of the spreadsheet: states in row 1 column A, and countries in row 1 column B.

Then enter the data, with each row representing one student in this example.

Once the data have been entered, save the Excel document as a .csv file: Go up to File >

Save As…, then change the Format to Comma Separated Values (.csv) and name the file

something meaningful. Note we show you below how to do this on the Mac; the ideas

are the same with a PC, but with a PC, you might just see the letters CSV (or the words

comma deliminated).

10

To import the file into R, type the following command (just as it is shown below) and
run

travels<-read.csv(file.choose())

A window will pop up asking you to find the file that you wish to import.

Find the file on your computer, click on it and then hit the OK button (or double-click the

file name). You know the file has been successfully imported if the name of the data

set ‘travels’ appears in Environment window.

The function read.csv() reads .csv files into R. We used read.csv() in the above

example and stored the data under the object name of travels.

The argument for read.csv() tells R where the .csv file is located, on your computer or

on the web. If the file is on your computer, the easiest way to find the file is through the
function file.choose(). This is the function that opens up the window in the above

example.

Back in the R console, type in the object name (travels) to look at the data that was just

imported.

11

The object travels is a data frame. It contains two vectors, states and countries.

Less informally, you can think of a data frame as a table that contains rows as

observations and columns as variables.

Entering data from a URL into R

Data can be imported into R using the ‘read.table()’, ‘read.csv()’, or ‘read.delim()’

depending on how the data is structured. For example, if you want to import

Australian crime data set into R, you can use a name of the data (say “au_crime”) set

and type the following :

au_crime<-read.table("http://www.stat.umn.edu/~wuxxx725/data/crime.txt",
header=T)

The second argument ‘header=T’ tells R that the file contains column labels (or

headers).

Graphing Data

One of the major strengths of R is its graphing capabilities. The main focus of graphical

displays in this class will be for quantitative data. In particular, we’ll look at boxplots and

histograms.

Creating Boxplots: Single and Side-by-Side Boxplots

In the states/countries example above, we’d ideally like side-by-side boxplots. We gathered

information about two variables, and both variables are measured in the same units. Thus,

12

it makes sense to create side-by-side graphs so we can easily compare the two variables in

terms of features like shape, center, and variability.

Before the side-by-side syntax is introduced, we will first create a boxplot with a single
variable.

If your data were directly entered into R, as you did with exam 1 and exam 2 data, then you

can use following commands :

boxplot(exam1)

 Then you will see a boxplot in ‘Plots’ lab.

The name of the function for creating boxplots is called boxplot() and there is only one

argument needed to create a single variable boxplot – the name of the single variable vector

(exam1). The syntax boxplot(exam1) will take the 4 numbers from the variable exam1 and

create a boxplot from them.

If your data was imported into R, as you did in travel data, then the variable names

cannot be directly accessed, that is, you cannot just type states or countries and get the

respective data. The variables must be referenced according to the object that contains the

variables. If we only want to look at the states variable/vector, then type the (object

name)$(variable name), as you see here:

travels$states

If you simply run travels$states, you will then see just the column of data within travels

that contains the states variable in the console, as shown below.

Then, to plot states using the boxplot() function, you’d simply type the following at

13

the command prompt and then hit Enter/Return:

boxplot(travels$states)

As you see, we get the boxplot in the Plots tab.

You can switch between two plots by clicking an arrow in Plots window (red circle below).

When you have two variables that are measured using the same units (such as states and

countries), you may want to compare the two variables side-by-side with side-by- side

boxplots (i.e., a plot of states right next to a plot of countries). To do this in R, run the

following syntax (note the syntax here is long, and you will want to type it just as you see

it below, together on one line):

boxplot(travels$states,travels$countries,names=c("States","Countr

ies"),main="Boxplot of number of States and Countries")

14

Doing this will give you the following boxplot.

The boxplot() function was used again. Then the minimal arguments needed for creating

side-by-side boxplots is the first line in the above syntax, boxplot(travels$states,

travels$countries).

The next two lines are optional arguments. The names= argument puts labels under each

plotted boxplot. Since we have more than one label, the c() function needs to be used in

order to put multiple labels on the graph. The main= argument will put a title on the plot

window. Remember to use quotes around labels or titles.

There are other graphical options for creating boxplots. Type ?boxplot to access the

boxplot R help page for more details.

Creating Histograms

Instead of boxplots, we could have created histograms for each variable individually. For

example, to create a histogram of states, we run the following syntax:

hist(travels$states)

The following histogram will be displayed once you execute the above command.

15

If we want to see the histograms in the same plot window, we can adjust the plot window

options in R. The following syntax will change the plot window options from 1 plot in the

plot window to two plots in the plot window, 1 row and 2 columns:

par(mfrow=c(1,2))

Then we can call the hist() function twice, one for each variable, to get two plots in the

plot window, as shown below (note that you would type in each command on a new line).

This will give us the following output, and this will allow us to do side-by-side

comparisons of our variables.

If you are looking at two variables that were measured in the same units, you might want
to specify that the x-axes in the histograms are similar. In the below code, we specify the

limits for the x-axis using the xlim=c(lower limit, upper limit) argument.

16

After you are finished with creating multiple plots in the plot window, make sure to change

the plot options back to the default options, by typing in the following command and then

hitting Enter/Return:

par(mfrow=c(1,1))

As you create graphs (and other output), you should always keep in mind that there are

more options/arguments for each function. You can access what options are available by

looking at the R help page for that function. Type ?(function name). For example,

?hist.

17

Copying and Pasting Output from R into Word

It is easy to copy R graphs and put them in many applications (e.g., Microsoft Word document). If

you select the R graphics window by clicking on “Export”-[Copy to clipboard…], you can select

the size you want and click “Copy Plot”. Then Paste the graph into the application document.

Summarizing Data with Numbers

In addition to graphing data, we will often want to summarize our data numerically by

computing various measures of center (like the mean and median) and variability (like the

standard deviation, range, and interquartile range). This is done by typing each summary

function out on different lines of code. Below are some examples of what this would look

like in R.

18

There is another summary function that gives you the 5-number summary (minimum, 1st

quartile, median, 3rd quartile, maximum), plus the mean. That command is shown below.

The final function option for obtaining summary measures, and the best one of them all, is

called the describe() function. But first, we must learn about packages in R and install

the {psych} package.

Packages are collections of R functions and data. R comes with a standard set of packages

that are ready to use right after installation of the software. However, there are other

packages available that could be useful to the R user. The package that is useful to us in

this particular instance is the {psych} package. To obtain the functions and data within

this package, we need to do a one-time only installation of the package onto our computer.

Use the function install.packages(“package name”) to download and install packages.

Then select a CRAN Mirror of which you want to download the package from (e.g., Iowa

State, or USA(IA)). Finally, type the following to access the functions and data that are
contained in the {psych} package:

This above line of code must be rerun with every new R session if you want to use the

functions and data within the package. That is, if you exit R and then come back to it and

want to use the describe() function, then you must first run library(psych).

The describe() function provides the following summary statistics for either vector

objects or data frame objects:

• var: variable id

• n: number of rows or units in the object

• mean: mean of the variable(s) in the object

• sd: standard deviation of the variable(s) in the object

• median: median of the variable(s) in the object

• trimmed: 10% trimmed mean of the variable(s) in the object

• mad: median absolute deviation of the variable(s) in the object

• min: minimum value of the variable(s) in the object

• max: maximum value of the variable(s) in the object

• range: maximum – minimum calculation of the variable(s) in the object

• skew: skew statistic of the variable(s) in the object

• kurtosis: kurtosis statistic of the variable(s) in the object

• se: standard error of the variable(s) in the object

19

Below, you’ll see some examples of how we can use this function with our states and

countries data file.

Creating a Confidence Interval for a Single Quantitative Variable

Suppose you collected data on the number of hours students indicate they have studied for

an exam:

10 12 15 14 18 19 10 11 9 11

Recall that the data can be directly typed into R using the c() function, or it can be

imported in if the data is in a .csv file.

The following example will import the above data from a .csv file into a data frame object

called study. Then, a 95% confidence interval will be computed for the Hours variable.

20

The t.test() function provides a lot of useful information regarding the Hours variable.

The function gives us the t-test information (t-statistic, df, p-value, hypothesized value),

confidence interval, and sample mean statistic. The only argument that is required in the

function is the variable we want to analyze (i.e, the Hours variable in the data set study:

study$Hours).

By default, a 95% confidence level is computed, but you can change the level of confidence

by typing in a new value. For example, if you would rather have a 90% confidence level,
type conf.level = .90 rather than conf.level=.95.

The last line of code, t.test(study$Hours, conf.level=.95)$conf.int[1:2], specifies

that we only want the confidence interval boundaries and not the rest of the t- test

information. As you can see, the syntax outputs only the lower and upper limits of the

confidence interval.

Conducting a One-sample t-test

Suppose there is a claim that students tend to study 12 hours for particular exam in question.

You want to test this claim with your sample of data. Since you have just a single sample

and you are using this sample to test a claim about a population parameter (the population

mean), you will conduct a one-sample t-test, with the following hypotheses:

H0: µ = 12

Ha: µ ≠ 12

You will once again use the t.test() function. By default, the population parameter is set

to not equal to 0 (i.e., parameter ≠ 0) in the alternative hypothesis (a two-sided or two-

tailed test).

The above can be modified if we want to test different alternative hypotheses, other than

the two-sided.

If we want to test the “less than” hypothesis,

H0: µ = 12

Ha: µ < 12

21

type in the following:

If we want to test the “greater than” hypothesis,

H0: µ = 12

Ha: µ > 12

type in the following:

Conducting a Paired t-test

Ten children have taken a pre-test of their vocabulary knowledge and a post-test of their

vocabulary knowledge. You would like to conduct a paired t-test to determine if there has

been a significant change in knowledge from pre-test to post-test. Since each child was

measured twice, the paired t-test is the appropriate technique to use here. We can conduct

a t-test, and we can also construct a confidence interval from the mean difference.

H0: µd = 0

Ha: µd ≠ 0

22

Similar to finding confidence intervals and conducting a one-sample t-test in R, the

t.test() function is used for conducting a paired t-test and finding a confidence interval

for the paired data. In this situation, we provide the two variables that were collected for

each child (vocab$pre and vocab$post) and also specify that we have paired data (paired

= T argument). The function takes the first argument (vocab$pre) and subtracts the second

argument from the first (vocab$post): vocab$pre - vocab$post. Finally, as seen

previously with the t.test() function, the arguments of the function may be modified to

perform the appropriate analysis (e.g., confidence level, direction of the alternative). See

the example below that changes the direction of the alternative to greater than 0 and

changes the confidence level to 99%.

H0: µd = 0

Ha: µd > 0

23

Note that if you have paired data, you will need to find the differences for each pair and

then graph those differences in order to determine if you are violating the necessary data

condition of normality in the population. Suppose we want to determine what the

differences are with our data object vocab.

You will need to specify the columns from the vocab object that you would like to

perform arithmetic on (in order to compute the differences for each pair of observations).

When doing arithmetic on the two vectors, it will take the difference of the "like" rows.

So post[row 1] - pre[row 1] = 9 - 5 = 4, and post[row 2] - pre[row 2] = 8 - 4 = 4, etc.

Arithmetic cannot be applied to two vectors that aren't of the same length.

To find all the differences, simply type the following command at the prompt:

vocab$post-vocab$pre

If you do this and hit the Enter/Return key, you’ll see all the differences were computed.

[1] 4 4 0 -2 1 -5 5 0 3 -1

You can then graph the differences by simply typing something like the following:

hist(vocab$post-vocab$pre)

Alternatively, you can create a new column in vocab, by typing vocab$(new column

name) <-, and then specify what you want in that column. In this case, I want a new

column and I am calling it diff, and I want the difference between the post and the pre test

to be in this column. I would first type in the following command at the command

prompt:

vocab$diff<-vocab$post-vocab$pre

Now, when I look at my vocab object, by typing in vocab at the command prompt, I will
see the following:

24

Conducting a Two-sample t-test

Suppose you have obtained a random sample of male students and a random sample of

female students and you would like to compare these two groups on scores on a particular

test. In this case, we have two independent samples – there is no reason for us to believe

each male in one sample would be paired or matched with one particular female in the

other sample. A two-sample t-test is therefore in order.

There are different ways to enter two-sample data in order to conduct a two-sample t-test.

We’ll show you one way here because we want you to get used to entering data in a

particular way when you are comparing independent groups. Here, you structure your data

by putting all of the scores for both groups in one column, and then you have a second

column that identifies the gender for that particular score. Note that below, we are using

“M” and “F” to stand for males and females, respectively. You could also use numerical

codes if you wanted (i.e., you could type in a 1 to stand for Males and a 2 for Females).

If you enter the data as shown above, the appropriate syntax for conducting the two-

sample t-test is:

25

As in the previous 3 sections, the arguments in the t.test() function may be changed to

fit our analysis (e.g., confidence level, direction of alternative). By default, the two- sample

t-test in R assumes unequal variances.

The assumption of equal population variances between the two groups is usually not valid.

However, if you wish to assume equal variances, use the syntax below that modifies the

var.equal= argument in the t.test() function.

Separate Summary Statistics and Graphs for Each Sample

If you are using R for your project and you have two independent samples, or groups, you

will need to spend some time describing the distributions of each sample separately (i.e.,

we want you to graph each sample by itself, compute summary statistics for each sample

by itself, and use this information to describe the sample; you will then be able to

compare and contrast the two samples based on what you see in the graphs and based on

the different measures of center and variability you compute).

There are two ways you can do this in R.

First, you can specify which rows in the data object file correspond to the gender of

interest (i.e., the gender you want to graph or compute summary statistics for).

Let’s go back to the test2 data object. We can specify which rows to look at by using the

[rows, columns] after the data object name. Below, you will see some syntax that you

would need to type in to do this for males.

summary(test2[test2$gender=="M",1])

26

With the above syntax, we are basically telling R that we want summary information on

the test2 object, but only looking at the rows where gender is Male (here we need == (or

double “equal” signs) instead of just = because it's a logical statement, and we need

quotes around the M because it's not a number). The 1 means that we only want output

for the scores variable (i.e., we want to know the summary statistics for the scores for

males) which is in column 1 in our spreadsheet.

If you type in the above command and hit Enter/Return, you’ll get the following output:

Certainly, you can do the same for the female data; same syntax, just change M to F.

You can also graph each group separately if you want to. For example, if you wanted a

boxplot for males, you’d simply type the following command:

boxplot(test2[test2$gender=="M",1])

Earlier in this reference guide, we showed you how you can get even more summary

statistics for your variables (other than just the five-number summary). Do you see now

how you might get those values in this example, for the males in the data set?

Second, instead of doing what we just did, you could make two NEW separate data

objects so you can simplify the typing. Certainly, typing test2[test2$gender=="M",1]

can be used for any function and it will give you all of the information you need for the

males in the study. However, if you want to use this syntax multiple times (for

descriptive or summary statistics, histograms, etc.), it is probably easiest if you create a

NEW data object that only contains the Male data information (and then do the same for

the second group, the Females). To do this here, simply type the following command:

males<-test2[test2$gender=="M",1]

If you then type in males at the command prompt (and hit Enter/Return), you’ll see just

the scores (i.e., the values in column 1) for males. If you then type length(males) and hit

Enter/Return, you’ll see the number of cases we have for males (here it is 12).

27

Hopefully you are now getting the hang of things and you see how you could also do this

for the females in the data set AND find summary statistics for each gender (and graph

each gender).

Correlation and Simple Linear Regression

To determine if two quantitative variables are related to one another, we can calculate the

correlation between the two variables. We can also create an equation that can be used to

predict one of these quantitative variables from another. Here, we will focus on the

variables GPA and SAT score.

It is important to get into the habit of creating a scatterplot before computing the correlation

coefficient and obtaining the regression equation to make sure the relationship between the

variables in question is linear. The line of code below is the minimum amount of syntax

needed for creating a scatterplot (e.g., plot(x,y)).

plot(x=gpa.sat$GPA,y=gpa.sat$SAT)

If you type in this code, you will get the following scatterplot.

28

To obtain the correlation between GPA and SAT score, use the cor() function as shown

below.

The arguments for the cor() function are the two variables you are interested in

correlating. The number above, 0.5472308, is the value of r, the Pearson Product- Moment

Correlation Coefficient.

The lm() function will be used to get the regression equation that can be used to predict

SAT score from GPA. Format: lm(y~x).

You should to save your lm() function under an object name as you will be needing it to

extract additional output using the summary() function. As a guide for writing the function,

you should type lm(y-variable ~ x-variable). So in the example above, our y-

29

variable is SAT from the gpa.sat data set and our x-variable is GPA from the gpa.sat

data set. Here, we labeled the lm() object model.

To obtain the regression equation information, you need to use the summary() function on

the lm() object name, so for the example above, the syntax is summary(model). The

predicted equation from the output above is:

Predicted SAT = 197.36 + 59.84*GPA

You can find the regression coefficients under the Coefficients section of the output and

then under the column labeled Estimate. The estimated intercept value is the first row and

the estimated slope value is in the second row.

Finally, you can use the model object to plot the predicted regression line in the plot

window (when the plot window contains a scatterplot of the two variables). You do this by

typing the following command at the command prompt:

abline(model)

Chi-square Test of Independence

To determine how two categorical variables relate (like gender and political party

affiliation), we can use the chi-square test of independence. Here, we have a sample of

males and females, and each male (M) and female (F) is categorized as being either

Republican (R) or Democrat (D). Is there a significant relationship between gender and

politics? To begin, we will first read in a .csv file and we’ll name our object gp (for Gender

Politics). As you see below, once we read in the file and then type our object

30

name, we can see the data. We have two columns in our data set corresponding to

gender and politics.

We can next create a contingency table by typing in table (gp).

To conduct a chi-square test, we now have to name a new object, and we’ll call this
test.gp. As you see below, you’ll need to type in the following command:

test.gp<-chisq.test(gp$gender, gp$politics, correct=F)

We type in correct = F because without this, R automatically conducts a more

conservative chi-square analysis by applying something called the Yates’ Continuity

Correction. We don’t want that here.

Note when you hit enter after typing the above command, you will get a warning

message. Please proceed despite this message by typing the new object name (test.gp) to

get the chi-square results.

There is additional information that chisq.test() does not output automatically. To see

what else is stored in test.gp, type names(test.gp).

31

The test automatically outputs the following when you type in the chisq.test() object

name, test.gp:

• statistic: the value the chi-squared test statistic.

• parameter: the degrees of freedom of the approximate chi-squared distribution

of the test statistic

• p.value: the p-value for the test.

• method: a character string indicating the type of test performed, and whether

Monte Carlo simulation or continuity correction was used.

• data.name: a character string giving the name(s) of the data.

The three options that are embedded within the function are

• observed: the observed counts.

• expected: the expected counts under the null hypothesis.

• residuals: the Pearson residuals, (observed - expected) / sqrt(expected).

We can access those options by typing in the (chisq.test object name)$(option name). So,

if you want, for example, to see the observed counts and the expected counts (to compare

them), you could do the following:

Now, with the above example, you began with a data file that included columns for

gender and politics. What if, instead of having that data file, you were given a

contingency table like the one below? Here, again, we have the same sample of males

and females, and each male and female is categorized as being either Republican (r) or

Democrat (d). Is there a significant relationship between gender and political party

affiliation?

 Males Females Totals

Democrat 3 4 7

Republican 4 4 8

Totals 7 8 15

32

We can enter the above information rather easily right into R in order to perform a chi-

square analysis.

We begin by defining our variables (gender and party). Note we want to enter the

information in a particular way here (we’ll first enter the two values for males (and we’ll

begin with the Democrat value) and then we’ll enter the two values for females).

We then define a data frame (which you could call anything; I called it “A” in the

example below).

Next, we name our contingency table. Here, I called that Political. I then asked to

perform a chi-square test of Political. Note the results are just the same as they were

above when we began with an original data file (rather than a contingency table). We

just did things in a slightly different way.

In terms of the warning message, you can see that we get a message that the chi-square

approximation may be incorrect. This is very likely because of the small expected

values. If you want to see the expected values, remember that you can do the following.

This involves first creating an object that holds the chi-square results.

33

