Predict Method for a "cv.glmtlp" Object.
predict.cv.glmtlp.Rd
Makes predictions for a cross-validated glmtlp model, using
the stored "glmtlp"
object, and the optimal value chosen for
lambda
.
Arguments
- object
Fitted
"cv.glmtlp"
object.- X
X Matrix of new values for
X
at which predictions are to be made. Must be a matrix.- type
Type of prediction to be made. For
"gaussian"
models, type"link"
and"response"
are equivalent and both give the fitted values. For"binomial"
models, type"link"
gives the linear predictors and type"response"
gives the fitted probabilities. Type"coefficients"
computes the coefficients at the provided values oflambda
orkappa
. Note that for"binomial"
models, results are returned only for the class corresponding to the second level of the factor response. Type"class"
applies only to"binomial"
models, and gives the class label corresponding to the maximum probability. Type"numnz"
gives the total number of non-zero coefficients for each value oflambda
orkappa
. Type"varnz"
gives a list of indices of the nonzero coefficients for each value oflambda
orkappa
.- lambda
Value of the penalty parameter
lambda
at which predictions are to be made Default is NULL.- kappa
Value of the penalty parameter
kappa
at which predictions are to be made. Default is NULL.- which
Index of the penalty parameter
lambda
orkappa
sequence at which predictions are to be made. Default is theidx.min
stored in thecv.glmtp
object.- ...
Additional arguments.
References
Shen, X., Pan, W., & Zhu, Y. (2012).
Likelihood-based selection and sharp parameter estimation.
Journal of the American Statistical Association, 107(497), 223-232.
Shen, X., Pan, W., Zhu, Y., & Zhou, H. (2013).
On constrained and regularized high-dimensional regression.
Annals of the Institute of Statistical Mathematics, 65(5), 807-832.
Li, C., Shen, X., & Pan, W. (2021).
Inference for a Large Directed Graphical Model with Interventions.
arXiv preprint arXiv:2110.03805.
Yang, Y., & Zou, H. (2014).
A coordinate majorization descent algorithm for l1 penalized learning.
Journal of Statistical Computation and Simulation, 84(1), 84-95.
Two R package Github: ncvreg and glmnet.
Author
Chunlin Li, Yu Yang, Chong Wu
Maintainer: Yu Yang yang6367@umn.edu
Examples
X <- matrix(rnorm(100 * 20), 100, 20)
y <- rnorm(100)
cv.fit <- cv.glmtlp(X, y, family = "gaussian", penalty = "l1")
predict(cv.fit, X = X[1:5, ])
#> [1] 0.04564887 0.04564887 0.04564887 0.04564887 0.04564887
coef(cv.fit)
#> intercept V1 V2 V3 V4 V5 V6
#> 0.04564887 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> V7 V8 V9 V10 V11 V12 V13
#> 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> V14 V15 V16 V17 V18 V19 V20
#> 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
predict(cv.fit, X = X[1:5, ], lambda = 0.1)
#> [1] -0.06388020 -0.09547175 0.26124340 -0.20715326 0.18311460